Artificial Intelligence

Beyond First-Order Logic

OUTLINE

- Non-Standard Quantifiers
- Multi-valued Logics
- Non-monotonic Inference in Logic
- Semantic Networks and Inheritance
- Frames, facets and Procedural Attachment
- Beyond Deductive Inference

Non-Standard Quantifiers

- Quantifier Extensions
 - Uniqueness: U(x)P(x)
 If x exists there is only one.
 E.g., Agnostic monotheism: U(x)God(x)
 - Unique Existence: $\exists U(x)P(x)$ $\forall (x)\exists U(p)$ [Country(x)→ President(p,x)]
 - Bounded Existence: At-most(N,x) P(x)∀(x) At-most(4,y) [Living-grandparents(x,y)]
 - Fuzzy Universals: Most(x)P(x) Most(x)[Bird(x)→ Fly(x)]

Multi-Valued Logics

The third value: Unknown

- Truth values: T, F.?
- ? = value of variable is unknown
- Enable inference nonetheless

X	у	(x&y)	$(x \rightarrow y)$	$(x\&y) \rightarrow y$
T	T	T	T	T
T	F	F	F	T
T	?			
F	T			
F	F			
F	?			
?	T			
?	F			
?	?			

Multi-Valued Logics

Observations

- Conservation of ?'s ->
 Indeterminacy does not increase
- Useful for reasoning under uncertainty
- Useful for pinpointing needed info
- Not useful for probabilistic inference

Multi-Valued Logics II

The Fourth value: Contradiction

- Truth values: T,F,?,#
- ? Means either T or F (unknown)
- # means neither T nor F

Why is 4-valued logic useful?

- Know when you don't know (inconclusive) →
 seek more knowledge
- Know when you can't know (inconsistency) → check accuracy of "known" facts
- "He knoweth not, and worse, he knoweth not that he knoweth not"—(Some famous dead writer)
- → Metareasoning: reasoning about what you know (part of Epistemology)

Non-Monotonic Reasoning

Inferential Monotonicity Property

$$\forall (P, A_i), \{A_i, ..., A_n\} \mid --P \rightarrow \{A_i, ..., A_n, A_{n+1}\} \mid --P$$

Monotonic Systems

- Respect inferential monotonicity
- FOL with modus ponens or resolution is monotonic
- Strict semantic net inheritance is monotonic

Non-Monotonic Systems

- Do not respect inferential monotonicity
- "Most(x)" quantifier leads to nonmonotonicity
- Default reasoning is nonmonotonic
- Semantic net inheritance with exceptions is nonmonotonic (typical kind of inheritance)
- Metaknowledge inference is nonmonotonic

Non-Monotonic Reasoning

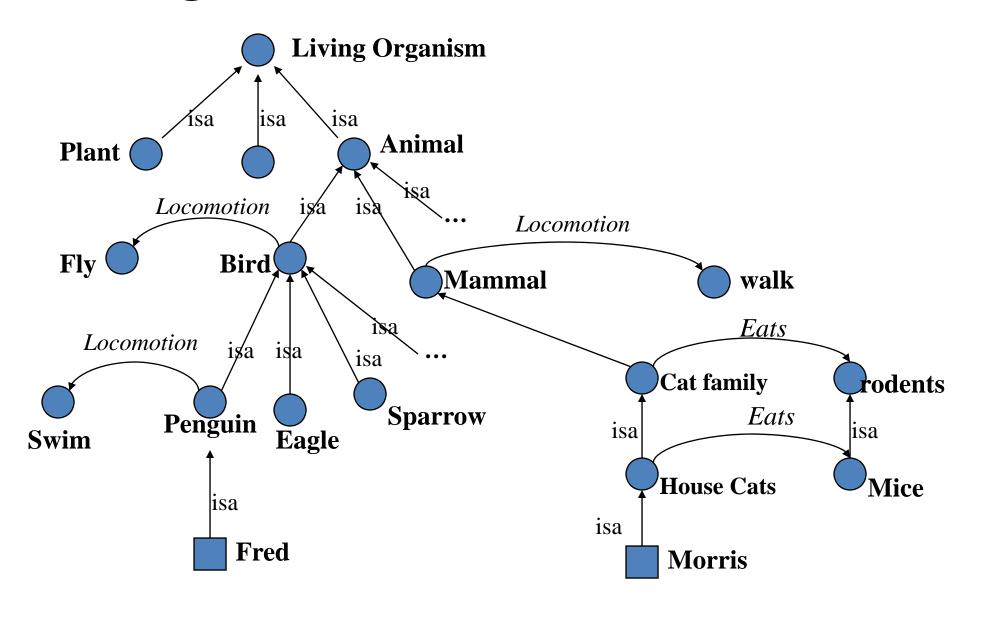
Example: LOK Inference

- 1. Items of type T_a if true are normally in KB.
- 2. Proposition $t_{i,a}$ of type T_a is queried, but not resolvable with KB.
- 3. Therefore t_a is presumed false, unless/until later proven true.

Semantic Networks

Definition

```
<N<sub>instances</sub>, N<sub>classes</sub>, L, I,C(I)>, where:
```


- **N**_{instances}: A set of nodes with individual denotations, such as "Clyde", "box-1", "AI core"
- N_{classes}: A set of nodes with set or class denotations, such as "CMU students", "Punic War Vets", "Elephants"
- L: A set of links (binary relations) over N, such as "brother-of", "eats", "likes"
- I: Inheritance relations over N and L, such as "isa", "part-of"
- **C(I):** Properties of each inheritance relation, e.g. "isa" is transitive, asymmetric (general-to-specific), non-reflexive, and potentially agglomerative

Semantic Networks

Uses of Semantic Nets

- Coding static world knowledge
- Built-in fast inference method (inheritance)
- Localization of information

Fragment of Semantic Network

Inheritance in Semantic Networks

Search Method

- Depth-first (good if unique answer)
- Breadth-first (maximally-local answer)
- Preferred-parent-first search (greedy HC)
- All-branch search (agglomerate all closest answers)
- Complete-search (know when answer is exception to the norm)

Inheritance in Semantic Networks

Coping with "Contradiction"

- Ignore it: stop at first answer
- Default overrides on individual paths
- Report all answers & paths (buck doesn't stop here)
- Explicit cancel-link semantics (e.g. NETL)
- Resource-bounded searchwhatever you can find in < N steps)

Frames in Knowledge Representation

PHILOSOPY

```
Frame system = Semantic Net +
structured nodes +
procedural attachment
```

INFERENCE PROCESSES:

- Inheritance
- Procedural attachment (demons)
- Frame Matching (a type of unification)

HISTORY

- Minsky, 1975 (first ideas)
- Bobrow & Winograd, 1977 (KRL)
- By 1980 in wide-spread use (FRL, SRL, Units)
- By 1985 in robust packaged form (CRL, KEE, FrameKit,...)
- By 1990 in general use for knowledge bases, and evolved into object-oriented data bases (OODBs)

Frames = Semantic Networks + Meta-structured nodes + Procedural Attachment

FRAME	SLOT	FACET	FILLER
[PC	[isa	[value	COMPUTER]]
	[manufacturer	[type-r	COMPANY]]
	[retail-price	[puller	(* &markup &wholesale)]
		[range-min	500]
		[range-max	10000]
		[unit	USD]]
	[markup	[value	1.5]]
	[owner	[type-r	LEGAL-ANIMATE]]]
[DELL-150/L			
	[isa	[value	PC]]
	[manufacturer	[value	DELL]]
	[processor	[value	pentium-4L]]
	[wholesale	[value	1400]]]

Procedural Attachment

Types of Attachments

 Pullers (aka "if needed" demons) calculate values on demand (optionally cache)

Caveat: control forward cascade

 Pushers (aka "if added" demons) propagate values through network

Caveat: check for loops

- If Referenced Tally, check cache validity,...
- If Deleted- Part of truth-maintenance system Check for cache-validation
- If Changed = if deleted + if added

Episodic Knowledge and Scripts

Semantic vs. Episodic

- Events vs. Facts
- Temporal and Causal sequences
- Use Semantic memory as component

Scripts

- Causally-connected event sequence
- Generalized by alternate paths:
 - Tree or DAG structure
 - Conditionals on branches
- Script-role generalization
 - Constants → Typed variables with restrictions
 - Climb a frame hierarchy

Episodic Knowledge and Scripts

Script Application Process

- Match Trigger events, including roles
- Instantiate forwards and backwards ruling out alternate branches
- Interpolation inference (abduction)
- Extrapolation inference (prediction)

Types of Inference

Deduction

- If A, A \rightarrow B, then B (modus ponens)
- Truth-preserving, formal reasoning
- Examples: inheritance, modus ponens, resolution
- Used in: Proofs, logic, logical argument
- Deductive closure: everything deducible from premises
- Requires retraction upon contradiction IF nonmonotonic
- Resolution is truth-conditional equivalent to deduction with transitive closure

Types of Inference

Abduction

- If B, A \rightarrow B, then perhaps A
- Seeks "explanation" for B being true
- Given closed-world hypothesis Abduction =Deduction (in reverse).
 - E.g. B, A \rightarrow B, C \rightarrow B, then A v C
- Abductive closure of A_i : all legal explanations for A_i .
- Requires retraction upon contradiction.

Types of Inference (continued)

Induction

- If P(A), P(B) P(C)..., then \forall (x) P(x)
- If P(A,A), P(B,B), $\sim P(A,B)$... then $\forall (x) P(x,x)$
- Falsity-preserving inference
- Generalization from instances
- Used in Machine Learning
- Requires retraction upon contradiction (e.g. if $^{\sim}P(Boo,Boo)$ retract $\forall (x) P(x,x)$)

Types of Inference

Analogy

- If [P(A) → P(B)] & [R(A) → R(B)] Then perhaps $Q(A) \rightarrow Q(B)$
- Analogy = Induction + Deduction
- Preserves neither truth nor falsity
- Yet, very useful:
 - Argumentation and rhetoric
 - Education and explanation
 - Insight for scientific discovery
 - Case-based reasoning & planning